

Colégio Dinâmico

Educação Infantil - Ensino Fundamental - Ensino Médio

■ colegiodinamico colegiodinamicojatai.com.br

Aluno ((a)	•	Data: 29 / 04 /	2020.

Professor (a): Estefânio Franco Maciel Série: 2º Ano

NOTA DE AULA DE FÍSICA

 $Q = m.c. \Lambda t$

 $Q = C.\Lambda t$

Q = m.L

06. PUC-RJ (adaptado)

Uma quantidade de água líquida de massa m = 200 g, a uma temperatura de 30 °C, é colocada em uma calorímetro junto a 150 g de gelo a 0 °C. Após atingir o equilíbrio, dado que o calor específico da água é $c_a = 1,0 \text{ cal/}(g \cdot {}^{\circ}C)$ e o calor latente de fusão do gelo é L = 80 cal/g, calcule a temperatura final da mistura gelo + água.

0 0								
Água: m = 200 g	Gelo: m = 150 g							
T = 30° C	T = 0° C							
Quantidade de calo perdida	Quantidade de calor							
pela água para chegar a 0°C	necessária para o gelo							
Q = m.c.∆t	derreter							
Q = 200.1.(0 - 30)	Q = m . L							
Q = -6000 cal	Q = 150 . 80							
	Q = 12000 cal							

Conclusão: Como a água não pode perder a quantidade de calor suficiente para o gelo derreter completamente, o gelo derrete parcialmente e a temperatura de equilíbrio será 0° C

14. Fuvest-SP

Tem-se certa quantidade de uma bebida dentro de um copo a 30 °C. O sistema tem capacidade térmica de 91 cal/°C. Dentro do copo, coloca-se uma pedra de gelo de 20 g a 0 °C no interior de um invólucro metálico de capacidade térmica de 2,0 cal/°C. Despreze trocas de calor com o meio ambiente.

- a. Estabelecido o equilíbrio térmico, qual é a temperatura final?
- b. Qual é a quantidade mínima de gelo de que se deveria dispor para baixar a temperatura da bebida a 0 °C?

Dados

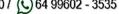
Calor específico latente de fusão do gelo = 80 cal/g; calor específico da água líquida = 1 cal/(g · °C)

Copo com a bebida	Pedra de gelo		Invólucro metálico
C = 91 cal/°C	m = 20 g		C = 2cal/° C
T = 30° C	T = 0°C		T = 0°C
Quantidade de calor	Quantidade de calor para o gelo		
máxima que pode ser	derreter		
perdida Perdida	Q = m.L		
$Q = C.\Delta t$	Q = 20.80		
Q = 91. (0 - 30)	Q = 1600 cal		
Q = -2730 cal	O gelo derrete completamente e após		
A bebida não resfriará	a fusão, é aquecido.		
até 0° C			
Copo com a bebida	gelo	Água	Invólucro metálico
C = 91 cal/°C	m = 20 g	$T = 0^{\circ}C \rightarrow T$	C = 2cal/° C
T = 30° C → T	$T = 0^{\circ}C$		$T = 0^{\circ}C \rightarrow T$
	Fusão		
Q = C.∆t	Q = m.L	Q = m.c.∆t	Q = C.∆t
Q = 91.(T - 30)	Q = 20.80	Q = 20.1.(T - 0)	Q = 2.(T - 0)
Q = 91T - 2730	Q = 1600 cal	Q = 20T	Q = 2T

$$\sum Q = 0$$

09. Enem

A Terra é cercada pelo vácuo espacial e, assim, ela só perde energia ao irradiá-la para o espaço. O aquecimento global que se verifica hoje decorre do pequeno desequilíbrio energético, de cerca de 0,3%, entre a energia que a Terra recebe do Sol e a energia irradiada a cada segundo, algo em torno de 1 W/m2. Isso significa que a Terra acumula, anualmente, cerca de 1,6 \cdot 10²² J. Considere que a energia necessária para transformar 1 kg de gelo a 0 °C em água líquida seja igual a 3,2 · 105 J. Se toda a energia acumulada anualmente fosse usada para derreter o gelo nos polos (a 0 °C), a quantidade de gelo derretida anualmente, em trilhões de toneladas, estaria entre:


- a. 20 e 40
- b. 40 e 60
- c. 60 e 80
- d. 80 e 100
- e. 100 e 120

 $L_{fusão} = 3,2.10^5 \text{ J/kg}$

Quantidade de calor acumulada anualmente= 1,6.10²² J Massa?

Q = m.L

1,6.10²² = m.3,2.10⁵ \rightarrow m = $\frac{1,6.10^{22}}{3,2.10^5}$ = 0, 5. 10¹⁷ kg ou 5. 10¹⁶ kg. = 5.10⁴ trilhão de kg = 50 trilhões de toneladas

Calor específico: quantidade de calor para que 1(g,kg) varie a temperatura em 1º (C,F,K)

Capacidade térmica: quantidade de calor para que um corpo varie a temperatura em 1º (C,F,K)

Latência ou calor latente: quantidade de calor para que 1(g,kg) mude de fase

